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Huge potential for real-world impact! … by bringing 
together vision researchers and industrial practitioners

… and formalizing challenges with supporting data





Self Disclosure: I do not work on InduStrial InspectiON applications, 
but the high-level ideas and methods we are developing in other 
vision domains may be useful in these applications
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• Scientific curiosity 
Most current neural network architectures are not nearly as efficient as human 
learners (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading [1]) 


• Inherent inability to large-scale label data 
For some domains / problems there may not be enough data to label (e.g., 
Adamantinoma — a rare bone cancer — may have as few as 300 reported cases) 


• Scaling and granularity of vision tasks 
As we attempt to scale vision systems to address more challenging inference 
tasks, we will not be able to get away with exhaustive data labeling

Why Data-efficient Learning?

[1] https://theconversation.com/were-told-ai-neural-networks-learn-the-way-humans-do-a-neuroscientist-explains-why-thats-not-the-case-183993

https://www.scientificamerican.com/article/are-there-too-many-neuroscientists/https://decemberlabs.com/blog/openai-gpt3-the-new-ai-that-will-blow-your-mind-might-also-be-a-little-overrated/

https://theconversation.com/were-told-ai-neural-networks-learn-the-way-humans-do-a-neuroscientist-explains-why-thats-not-the-case-183993
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Image-level 
Classification
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Granularity of the task vs. annotation cost … 



Image-level 
Classification

Man, Woman, Horse Man, Woman, Horse, Horse

Instance-level 

Detection

Instance-level 
Segmentation

Granularity of the task vs. annotation cost … 



Image-level 
Classification

Man, Woman, Horse Man, Woman, Horse, Horse

Instance-level 

Detection

Instance-level 
Segmentation

Scene-graph 
Generation

person

horse

next to

next to
sitting


on

person

horse

sitting

on

Granularity of the task vs. annotation cost … 



Man, Woman, Horse, Horse

Instance-level 

Detection

Instance-level 
Segmentation

Scene-graph 
Generation

person

horse

next to

next to
sitting


on

person

horse

sitting

on

Question  
Answering

Q: What are people doing?

Q: What time of the year is it?

Q: Are the people married?

Granularity of the task vs. annotation cost … 



• Ability to run on low-compute devices 
Most current neural network architectures are not able to run on mobile or 
embedded devices


• Low-latency inference  
Ability to run with low-latency, means high throughput for the system


• High adaptability of the model 
If both learning and inference are compute-efficient, we can potentially adopt 
models mode easily with incoming data

Why Compute-efficient Learning?
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Image from CameraLyze

Inspection Applications:
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• Biases in ML models have been shown and are concerning  
Existing models are excellent in picking up, modeling (and in some cases) even 
amplifying (human) biases available in the data
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• Biases in ML models have been shown and are concerning  
Existing models are excellent in picking up, modeling (and in some cases) even 
amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??? 

Output: Homemaker

Input: Man to doctor as woman to ??? 

Output: Nurse

[“Man is to Computer Programmer as Woman is to Homemaker? Debasing Word 
Embeddings”, Bolukbasi, Chang, Zou, Saligrama, KalaiNeurIPS, 2016]



Why Less-biased Learning?

• Biases in ML models have been shown and are concerning  
Existing models are excellent in picking up, modeling (and in some cases) even 
amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??? 

Output: Homemaker

Input: Man to doctor as woman to ??? 

Output: Nurse

[“Man is to Computer Programmer as Woman is to Homemaker? Debasing Word 
Embeddings”, Bolukbasi, Chang, Zou, Saligrama, KalaiNeurIPS, 2016]

Prompt: “A photo of a doctor”

https://cornell-data.medium.com/how-biased-are-text-to-image-models-99e8fdb8c5ab

DALL-E Generated: 2.35 male doctors for every 1 female 

US Empirical Statistics: 1.78 male doctors for every 1 female 

Prompt: “A photo of a nurse”
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Inspection, Defect and Anomaly Detection

Image from CameraLyze

• Large-number of defect-free images may not be available 
(e.g., new product lines starting to be manufactured) 


• There will be few defect images if any                              
(e.g., leading to huge class imbalance) 

[ “A hierarchical transformation-discriminating generative model for few shot anomaly detection”, Sheynin, Benaim, Wolf, ICCV, 2021. ]

[ “Registration based few-shot anomaly detection”, Huang, Guan, Jiang, Zhang, Spratling, Wang. ECCV, 2022. ]

[ “Anomaly detection via few-shot learning on normality”, Ando,Yamamoto. ECML PKDD, 2022. ]

[ “Same same but differnet: Semi-supervised defect detection with normalizing flows”, Rudolph, Wandt, Rosenhahn, WACV, 2021 ] 
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UniT: Unified Knowledge Transfer for Any-shot Detection
There is no single unified solution that is applicable to a wide range of supervision: 

from zero to a few instance-level samples for novel classes

Novel Classes

Image-level  
Data

Image-level  
Data
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Data

Instance-level  
Data

Few / ZeroAbundant

Ba
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las
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We propose an intuitive unified framework that can work 
seamlessly across settings and levels of supervision


Raghav Goyal*Siddhesh Khandelwal*

UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation, Khandelwal, Goyal, Sigal (2021)



Data Efficiency, Strategy 2: 

Multi-task + Transfer Learning

Source Task 2

Learn Model for 
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Learn Model for 
Target Task

Small Labeled Dataset 
for Target Task

Transfer


Knowledge

Source Task 1 Source Task K



Multi-task Video Understanding 

TBD



Data Efficiency, Strategy 3: 

Foundational Model
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Self-supervised Proxy Task(s)
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for Target Task

Transfer


Features
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Self-supervised Learning
• Contrastive / Discriminative Learning (introduce 

transformations and learn invariant representation) 

• With negative samples (e.g., SimCLR [Chen et al., ICML’20], 

MoCo [He et al., CVPR’20])

• Without negative samples  (e.g., BYOL [Grill et al., NeurIPS’20], 

DINO [Caron et al., ICCV’21])


• Predictive / Generative Learning (predict what is 
missing and/or what comes next)

• Bert-style masked image modeling (e.g., BEiT [Bao et al., 

ICLR’22], MAE [He et al., CVPR’22])

• GPT-style autoregressive image modeling (e.g., iGPT 

[Chen et al., ICML’20])
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the next pixel / patch

Bert-style GPT-style
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Visual “Language” Model

Tianyu Hua 
( MSc, UBC )

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)



Visual “Language” Model

How do we partition an image into “words”?


How do we serialize an image into a sequence of these words?


How do we formalize the prediction for the next likely word? 

Tianyu Hua 
( MSc, UBC )

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)
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Random Segments with Autoregressive Coding

Group pixels into patches (visual words)


Group images patches (words) into hierarchically 
arranged segments (phrases and sentences) 


— Within each segment, predictions are made in parallel

— Across segments, predictions are made sequentially


Randomized serialization strategy to account for 
different order of visual traversal

Tianyu Hua 
( MSc, UBC )

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)
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Random Segments with Autoregressive Coding

Tianyu Hua 
( MSc, UBC )

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)
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Visualizations

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)



Low-data Image Classification (on CIFAR10/100 Datasets)

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)
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Image Classification (on ImageNet Dataset)

Image-level 
Classification

Man, Woman, Horse

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)



Object Detection (on COCO Dataset)

Man, Woman,  
Horse, Horse

Instance-level 

Detection

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)



Image Segmentation (on ADE20K Dataset)

Man, Woman,  
Horse, Horse

Instance-level 
Segmentation

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)



Compute Efficiency, Strategy 1: 

Iterative Refinement



Chapter 2: 

Computational Efficiency and Data Bias



Scene Graphs 

Scene Graphs are graph based representation of images that encode 
the objects in an image along with their relationships.

Siddhesh Khandelwal 
( PhD, UBC )

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)
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Scene Graphs 

Scene Graphs are graph based representation of images that encode 
the objects in an image along with their relationships.
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)
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Siddhesh Khandelwal 
( PhD, UBC )
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Iterative Scene Graph Generation
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Key Insight: Formulate the problem of Scene Graph estimation as 
one of iterative refinement 

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )



Transformer Based Iterative Generation

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

The iterative framework is realized using a novel transformer-based architecture



Image Encoder

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

[1] Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Springer, Cham, 2020.

Similar to DETR[1], the encoder is a multi-layer transformer network that encodes 
image into a feature representation



Triplet Decoder

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

Each of the subject, object, and predicate predictors is a multi-layer transformer



Triplet Decoder

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

The iterative framework is modelled explicitly by using two kinds of conditioning 
and implicitly by a joint loss



Conditioning Within Step

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

The predicate predictor within a particular step  is conditioned on the subject and 
object decoder outputs at step 

t
t



Conditioning Across Steps

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

The predicate decoder within a particular step  is conditioned on the previous 
graph estimate from step 

t
t − 1



Joint Loss

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

We additionally use a novel joint loss to ensure a valid scene graph is generated at 
each step. This loss implicitly enables refinement.



De-Biasing, Strategy 1: 

Data Re-sampling

Frequent Relations Rare Relations

[ “Bipartite Graph Network with Adaptive Message Passing for Unbiased Scene Graph Generation”, Li, Zhang, Wan, He, CVPR, 2021 ]
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De-Biasing, Strategy 2: 

Loss Re-scaling



Loss Re-weighting

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )

A loss re-weighting strategy is used to address the inherent long-tail nature of the 
task, giving our model flexibility to trade-of dominant for underrepresented classes

× w

wc = max {( α
class frequency in training set )

β

,1.0}



Experiments

Our proposed transformer based approach outperforms existing baselines, while 
simultaneously operating on a wide spectrum of performance metrics.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal 
( PhD, UBC )
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Siddhesh Khandelwal 
( PhD, UBC )



Visualization 

The graph quality improves over multiple refinement steps

Siddhesh Khandelwal 
( PhD, UBC )

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



Visualization 

The graph quality improves over multiple refinement steps

This also means we can trade off 
quality for computation

Siddhesh Khandelwal 
( PhD, UBC )

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



Data Efficiency, Strategy 4: 

Adding Prior Knowledge

Learn Model for 
Target Task

Small Labeled Dataset 
for Target Task

Prior


Knowledge 

( Case-study in Common Sense )



Knowledge-based Visual Question Answering

hearing and smell

Aditya Chinchure  
( MSc, UBC )

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge-based Visual Question Answering

Requires visual knowledge that the cat is 
present, but also common sense semantic 

knowledge about cats as specie

Aditya Chinchure  
( MSc, UBC )

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)
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Knowledge Generation & Selection

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge Generation & Selection

Convert question into declarative statement and concatenate detected objects

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge Generation & Selection

Query a neural knowledge-based model to extract common sense inferences 

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)
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Knowledge Generation & Selection

Convert inferences into sentences using lingual templates

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge Generation & Selection

Select inferences that are most relevant for the current question

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge-based Visual Question Answering
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Results
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Question  
Answering

Q: What are people doing?

Q: What time of the year is it?

Q: Are the people married?
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• Data-efficient Learning 

– Large-model + Transfer-learning 
– Multi-task learning + Fine-tuning 
– Foundational Model + Fine-tuning 
– Prior-knowledge Integration 
– In-context Learning, Prompting 

– Many other techniques … 


• Compute-efficient Inference 

– Iterative refinement with early stopping (a.k.a. cascades) 
– Many other techniques …


• Data-bias Mitigation 

– Data re-sampling 
– Loss re-weighting 
– Many other techniques …

To conclude …






