Efficient and Less-biased Visual Learning

Leonid Sigal

THE UNIVERSITY **OF BRITISH COLUMBIA**

Professor of Computer Science

NSERC Canada Research Chair (CRC) in Computer Vision and ML CIFAR Artificial Intelligence (AI) Chair, Vector Institute

1st workshop on Vision-based InduStrial InspectiON

CONTRACTOR OF THE OFFICE OFFIC

1st workshop on Vision-based InduStrial InspectiON

VANCOUVER, CANADA

1st workshop on Vision-based InduStrial InspectiON

Huge potential for real-world impact! ... by bringing together vision researchers and industrial practitioners

Track	Description	Make a Challenge Submission
Challenge 1	Data-efficient Defect Detection	
Challenge 2	Data-generation for Defect Detection	

... and formalizing challenges with supporting **data**

CONTRACTOR OF THE OFFICE OFFIC

1st workshop on Vision-based InduStrial InspectiON

1st workshop on Vision-based InduStrial InspectiON

Self Disclosure: I do not work on InduStrial InspectiON applications, but the high-level ideas and methods we are developing in other vision domains may be useful in these applications

Efficient and Less-biased Visual Learning

Efficient and Less-biased Visual Learning

Why **Data-efficient** Learning?

Scientific curiosity

Most current neural network architectures are not nearly as efficient as human **Iearners** (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading ^[1])

nups://decempenaps.com/piog/openal-gpt3-the-new-al-that-wiii-piow-your-mind-might-also-pe-a-iittle-ovenated

[1] <u>https://theconversation.com/were-told-ai-neural-networks-learn-the-way-humans-do-a-neuroscientist-explains-why-thats-not-the-case-183993</u>

https://www.scientiiicamerican.com/article/are-there-too-many-neuroscientists

Why **Data-efficient** Learning?

- Scientific curiosity
- Inherent inability to large-scale label data Adamantinoma — a rare bone cancer — may have as few as 300 reported cases)

https://developer.nvidia.com/blog/automatically-segmenting-brain-tumors-with-ai/

Most current neural network architectures are not nearly as efficient as human

Iearners (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading ^[1])

For some domains / problems there may not be enough data to label (e.g.,

Why **Data-efficient** Learning?

- Scientific curiosity
- Inherent inability to large-scale label data Adamantinoma — a rare bone cancer — may have as few as 300 reported cases)
- Scaling and granularity of vision tasks tasks, we will not be able to get away with exhaustive data labeling

Most current neural network architectures are not nearly as efficient as human

Iearners (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading^[1])

For some domains / problems there may not be enough data to label (e.g.,

As we attempt to scale vision systems to address more challenging inference

Image-level Classification

Man, Woman, Horse

Image-level Classification

Man, Woman, Horse

Instance-level Detection

Man, Woman, Horse, Horse

Instance-level Segmentation

Image-level Classification

Man, Woman, Horse

Instance-level Detection

Man, Woman, Horse, Horse

Instance-level Segmentation

Instance-level Segmentation

Man, Woman, Horse, Horse

Q: What are people doing?Q: What time of the year is it?Q: Are the people married?

Why **Compute-efficient** Learning?

- Ability to run on low-compute devices embedded devices
- Low-latency inference Ability to run with low-latency, means high throughput for the system
- High adaptability of the model If both learning and inference are compute-efficient, we can potentially adopt models mode easily with incoming data

Most current neural network architectures are not able to run on mobile or

Why **Compute-efficient** Learning?

- Low-latency inference Ability to run with low-latency, means high throughput for the system
- High adaptability of the model If both learning and inference are compute-efficient, we can potentially adopt models mode easily with incoming data

Image from CameraLyze

Efficient and Less-biased Visual Learning

 Biases in ML models have been shown and are concerning amplifying (human) biases available in the data

Existing models are excellent in picking up, modeling (and in some cases) even

 Biases in ML models have been shown and are concerning amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??? **Output:** Homemaker

Input: Man to doctor as woman to ??? **Output:** Nurse

["Man is to Computer Programmer as Woman is to Homemaker? Debasing Word Embeddings", Bolukbasi, Chang, Zou, Saligrama, KalaiNeurIPS, 2016]

Existing models are excellent in picking up, modeling (and in some cases) even

 Biases in ML models have been shown and are concerning amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??? **Output:** Homemaker

Input: Man to doctor as woman to ??? **Output:** Nurse

["Man is to Computer Programmer as Woman is to Homemaker? Debasing Word Embeddings", Bolukbasi, Chang, Zou, Saligrama, KalaiNeurIPS, 2016]

Existing models are excellent in picking up, modeling (and in some cases) even

Prompt: "A photo of a doctor"

Prompt: "A photo of a nurse"

DALL-E Generated: 2.35 male doctors for every 1 female **US Empirical Statistics**: 1.78 male doctors for every 1 female

https://cornell-data.medium.com/how-biased-are-text-to-image-models-99e8fdb8c5ab

 Biases in ML models have been shown and are concerning amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??? **Output:** Homemaker

Input: Man to doctor as woman to ??? **Output:** Nurse

["Man is to Computer Programmer as Woman is to Homemaker? Debasing Word Embeddings", Bolukbasi, Chang, Zou, Saligrama, KalaiNeurIPS, 2016]

Existing models are excellent in picking up, modeling (and in some cases) even

Prompt: "A photo of a doctor"

Prompt: "A photo of a nurse"

DALL-E Generated: 2.35 male doctors for every 1 female **US Empirical Statistics**: 1.78 male doctors for every 1 female

https://cornell-data.medium.com/how-biased-are-text-to-image-models-99e8fdb8c5ab

Inspection, Defect and Anomaly Detection

Inspection, Defect and Anomaly Detection

Large-number of defect-free images may not be available

(e.g., new product lines starting to be manufactured)

"A hierarchical transformation-discriminating generative model for few shot anomaly detection", Sheynin, Benaim, Wolf, ICCV, 2021.] ["Registration based few-shot anomaly detection", Huang, Guan, Jiang, Zhang, Spratling, Wang. ECCV, 2022.] ["Anomaly detection via few-shot learning on normality", Ando, Yamamoto. ECML PKDD, 2022.] ["Same same but differnet: Semi-supervised defect detection with normalizing flows", Rudolph, Wandt, Rosenhahn, WACV, 2021]

Inspection, Defect and Anomaly Detection

- Large-number of defect-free images may not be available (e.g., new product lines starting to be manufactured)
- There will be few defect images if any

(e.g., leading to huge class imbalance)

Data Efficiency, Strategy 1: Large Model + Transfer Learning

Data Efficiency, Strategy 1: Large Model + Transfer Learning erecirion Segmente Large Labeled Dataset **Small** Labeled Dataset for **Source** Task for Target Task ommon Objects in Contex 80 categories

Transfer Knowledge

Learn Model for Target Task

UniT: Unified Knowledge Transfer for Any-shot Detection

UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation, Khandelwal, Goyal, Sigal (2021)

There is no single unified solution that is applicable to a wide range of supervision: from zero to a few instance-level samples for *novel* classes

Data Efficiency, Strategy 2: Multi-task + Transfer Learning

Multi-task Video Understanding

Data Efficiency, Strategy 3: Foundational Model

Learn (Foundational) Model with Self-supervised **Proxy** Task(s)

Data Efficiency, Strategy 3: Foundational Model

Small Labeled Dataset for Target Task

Data Efficiency, Strategy 3: Foundational Model

Learn (Foundational) Model with Self-supervised **Proxy** Task(s)

Self-supervised Learning

Self-supervised Learning

- Contrastive / Discriminative Learning (introduce transformations and learn invariant representation)
 - With negative samples (e.g., SimCLR [Chen et al., ICML'20], MoCo [He et al., CVPR'20])
 - Without negative samples (e.g., BYOL [Grill et al., NeurIPS'20], DINO [Caron et al., ICCV'21])

Self-supervised Learning

- Contrastive / Discriminative Learning (introduce transformations and learn invariant representation)
 - With negative samples (e.g., SimCLR [Chen et al., ICML'20], MoCo [He et al., CVPR'20])
 - Without negative samples (e.g., BYOL [Grill et al., NeurIPS'20], DINO [Caron et al., ICCV'21])
- **Predictive / Generative** Learning (predict what is missing and/or what comes next)
 - Bert-style masked image modeling (e.g., BEIT [Bao et al., ICLR'22], MAE [He et al., CVPR'22])
 - GPT-style autoregressive image modeling (e.g., iGPT [Chen et al., ICML'20])

Self-supervised Learning

Bert-style

Task: predict missing pixels / patches

- Predictive / Generative Learning (predict what is missing and/or what comes next)
 - Bert-style masked image modeling (e.g., BEIT [Bao et al., ICLR'22], MAE [He et al., CVPR'22])
 - GPT-style autoregressive image modeling (e.g., iGPT [Chen et al., ICML'20])

Task: iteratively predict the next pixel / patch

Self-supervised Learning

Bert-style

- Predictive / Generative Learning (predict what is missing and/or what comes next)
 - Bert-style masked image modeling (e.g., BEIT [Bao et al., ICLR'22], MAE [He et al., CVPR'22])
 - GPT-style autoregressive image modeling (e.g., iGPT [Chen et al., ICML'20])

Visual "Language" Model

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

(MSc, UBC)

Visual "Language" Model

How do we partition an image into "words"? How do we serialize an image into a **sequence** of these words? How do we **formalize the prediction** for the next likely word?

Visual "Language" Model

How do we partition an image into "words"? How do we serialize an image into a **sequence** of these words? How do we **formalize the prediction** for the next likely word?

fixation Saccade

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

(MSc, UBC)

Random Segments with Autoregressive Coding

Group **pixels** into **patches** (visual words)

Group images patches (words) into hierarchically arranged segments (phrases and sentences)

- Within each segment, predictions are made in parallel
- Across segments, predictions are made sequentially

Randomized serialization strategy to account for different order of visual traversal

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

Tianyu Hua (MSc, UBC)

Random Segments with Autoregressive Coding

Group **pixels** into **patches** (visual words)

Group images patches (words) into hierarchically arranged segments (phrases and sentences)

- Within each segment, predictions are made in parallel
- Across segments, predictions are made sequentially

Randomized serialization strategy to account for different order of visual traversal

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

(MSc, UBC)

Random Segments with Autoregressive Coding

CIFAR10

CIFAR10

CIFAR10

CIFAR10

CIFAR10

Image Serialization

CIFAR10

Image Serialization

ImageNet100

Token Grouping (into segments)

ImageNet100

Linear Probing 1

Dog Cat

53.0

Token Grouping (into segments)

ImageNet100

Linear Probing 1

Dog Cat

Visualizations

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

_ _

Low-data Image Classification (on CIFAR10/100 Datasets)

Modol	CIFAR10		
IVIUUEI	LIN	FT	
Supervised		91.	
DINO (Caron et al., 2021)	89.0	94.	
MAE (He et al., 2021)	87.3	95.	
RandSAC-Square	92.1	96.	
RandSAC-Blob	93.9	96.	

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

Man, Woman, Horse

Image Classification (on ImageNet Dataset)

	Model	Backbone	Parameter	Linear	Fine-tune
Supervised	DeiT (Touvron et al., 2021)	ViT-B	86M	N/A	81.2
Clustering	DINO (Caron et al., 2021)	ViT-B	86M	78.2	82.8
Contrastive Learning	MoCo v3 (Chen et al., 2021b)	ViT-B	86M	76.7	83.2
Masked Image Modeling	BEIT (Bao et al., 2022) MAE (He et al., 2021)	ViT-B ViT-B	86M 86M	N/A 68.0	83.2 83.6
Autoregressive Image Modeling	iGPT (Chen et al., 2020a) iGPT (Chen et al., 2020a) iGPT (Chen et al., 2020a)	iGPT-S iGPT-M iGPT-L	76M 455M 1362M	41.9 54.5 65.2	N/A N/A N/A
	RandSAC-Square (K=9) RandSAC-Square (K=16 \rightarrow 4)	ViT-B ViT-B	86M 86M	72.3 68.9	83.7 83.9

Object Detection (on COCO Dataset)

Method	Pre-Epochs	AP^{bbox}	AP^{mask}	
DeiT (Touvron et al., 2021)	300	47.9	42.9	
MoCo-v3 (Chen et al., 2021b)	300	47.9	42.7	
DINO (Caron et al., 2021)	300	46.8	41.5	
BEiT (Bao et al., 2022)	800	49.8	44.4	
MAE (He et al., 2021)	1600	50.3	44.9	
RandSAC-Square (K=16 \rightarrow 4)	1600	50.9	45.0	

Image Segmentation (on ADE20K Dataset)

Method	Crops	Super.	Self-super.	mIoU
DeiT (Touvron et al., 2021)	1	✓	X	47.0
MoCo v3 (Chen et al., 2021b)	2	X	\checkmark	47.2
DINO (Caron et al., 2021)	2 + 10	×	\checkmark	47.2
BEiT (Bao et al., 2022)	1	×	\checkmark	46.5
MAE	1	X	✓	48.1
RandSAC-Square (K=9)	1	X	✓	48.3
RandSAC-Square (K=16 \rightarrow 4)	1	X	✓	48.5

Compute Efficiency, Strategy 1: Iterative Refinement

Chapter 2:

Computational Efficiency and Data Bias

Scene Graphs are graph based representation of images that encode the **objects** in an image along with their **relationships**.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Scene Graphs are graph based representation of images that encode the **objects** in an image along with their **relationships**.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Scene Graphs are graph based representation of images that encode the **objects** in an image along with their **relationships**.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Scene Graphs are graph based representation of images that encode the **objects** in an image along with their **relationships**.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Hat

Person

Scene Graphs are graph based representation of images that encode the **objects** in an image along with their **relationships**.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Iterative Scene Graph Generation

Key Insight: Formulate the problem of Scene Graph estimation as one of iterative refinement

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Transformer Based Iterative Generation

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal (PhD, UBC)

The iterative framework is realized using a novel transformer-based architecture

Image Encoder

Similar to DETR^[1], the encoder is a multi-layer transformer network that encodes image into a feature representation

[1] Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Springer, Cham, 2020.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Triplet **Decoder**

Each of the subject, object, and predicate predictors is a multi-layer transformer

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Triplet **Decoder**

The iterative framework is modelled explicitly by using two kinds of conditioning and implicitly by a joint loss

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal (PhD, UBC)

PROCESSING SYSTEMS
Conditioning Within Step

The predicate predictor within a particular step t is conditioned on the subject and object decoder outputs at step t

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Conditioning Across Steps

The predicate decoder within a particular graph estimate from step t - 1

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

The predicate decoder within a particular step t is conditioned on the previous

Joint Loss

each step. This loss implicitly enables refinement.

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

We additionally use a novel joint loss to ensure a valid scene graph is generated at

PROCESSING SYSTEMS

De-**Biasing**, **Strategy 1**: Data Re-sampling

["Bipartite Graph Network with Adaptive Message Passing for Unbiased Scene Graph Generation", Li, Zhang, Wan, He, CVPR, 2021]

De-**Biasing**, **Strategy 1**: Data Re-sampling

"Bipartite Graph Network with Adaptive Message Passing for Unbiased Scene Graph Generation", Li, Zhang, Wan, He, CVPR, 2021

De-**Biasing**, **Strategy 2**: Loss Re-scaling

Loss Re-weighting

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal (PhD, UBC)

A loss re-weighting strategy is used to address the inherent long-tail nature of the task, giving our model flexibility to trade-off dominant for underrepresented classes

Experiments

simultaneously operating on a wide spectrum of performance metrics.

Method	mR@50/100	R@50/100	hR@50/100	Head	Body	Tail
BGNN [30, 29]	8.6 / 10.3	28.2 / 33.8	13.2 / 15.8	29.1	12.6	2.2
ReIDN [53, 29]	4.4 / 5.4	30.3 / 34.8	7.7 / 9.3	31.3	2.3	0.0
AS-Net [4]	6.1 / 7.2	$18.7 \ / \ 21.1$	9.2/10.7	19.6	7.7	2.7
HOTR [27]	9.4 / 12.0	$23.5 \ / \ 27.7$	$13.4\ /\ 16.7$	26.1	16.2	3.4
	Concurren	nt Work				
$\mathrm{SGTR}_{M=1}$ [29]	12.0 / 14.6	25.1 / 26.6	16.2 / 18.8	27.1	17.2	6.9
$SGTR_{M=3}$ [29]	12.0/15.2	24.6/28.4	16.1 / 19.8	28.2	18.6	7.1
$SGTR_{M=3,BGNN[30]}[29]$	15.8/20.1	20.6 / 25.0	$17.9\ /\ 22.3$	21.7	21.6	17.1
$Ours_{(\alpha=0.0,\beta=*)}$	8.0 / 8.8	$29.7 \ / \ 32.1$	$12.6 \ / \ 13.8$	31.7	9.0	1.4
$Ours_{(\alpha=0.14,\beta=0.5)}$	14.4 / 16.4	27.9 / 30.4	$19.0\ /\ 21.3$	30.0	17.3	11.2
$Ours_{(\alpha=0.07,\beta=0.75)}$	15.7 / 17.8	27.2 / 29.8	$19.9 \ / \ 22.3$	28.5	18.8	13.3
$Ours_{(\alpha=0.14,\beta=0.75)}$	15.8/18.2	26.1 / 28.7	$19.7\ /\ 22.3$	28.2	19.4	13.8
$Ours_{(\alpha=0.14,\beta=0.75),BGNN}$ [30]	17.1 / 19.2	$22.9 \ / \ 25.7$	$19.6 \ / \ 22.0$	24.4	20.2	16.4
$Ours_{(\alpha=0.14,\beta=0.75),M=3}$	19.5 / 23.4	30.8 / 35.6	$23.9 \ / \ 28.2$	32.9	28.1	15.8

Siddhesh Khandelwal (PhD, UBC)

Our proposed transformer based approach outperforms existing baselines, while

Experiments

Our proposed transformer based approach outperforms existing baselines, while simultaneously operating on a wide spectrum of performance metrics.

Method	mR@50/100	R@50/100	hR@50/100	Head	Body	Tail
BGNN [30, 29]	8.6 / 10.3	28.2 / 33.8	13.2 / 15.8	29.1	12.6	2.2
RelDN [53, 29]	4.4 / 5.4	30.3 / 34.8	7.7 / 9.3	31.3	2.3	0.0
AS-Net [4]	6.1 / 7.2	18.7 / 21.1	9.2 / 10.7	19.6	7.7	2.7
HOTR [27]	$9.4 \ / \ 12.0$	23.5 / 27.7	13.4 / 16.7	26.1	16.2	3.4
	Concurre	nt Work				
$SGTR_{M=1}$ [29]	12.0 / 14.6	25.1 / 26.6	16.2 / 18.8	27.1	17.2	6.9
$SGTR_{M=3}$ [29]	12.0 / 15.2	24.6 / 28.4	16.1 / 19.8	28.2	18.6	7.1
$SGTR_{M=3,BGNN[30]}$ [29]	15.8/20.1	$20.6 \ / \ 25.0$	$17.9\ /\ 22.3$	21.7	21.6	17.1
$Ours_{(\alpha=0.0,\beta=*)}$	8.0 / 8.8	$29.7 \ / \ 32.1$	$12.6 \ / \ 13.8$	31.7	9.0	1.4
$Ours_{(\alpha=0.14,\beta=0.5)}$	14.4 / 16.4	27.9 / 30.4	$19.0\ /\ 21.3$	30.0	17.3	11.2
$Ours_{(\alpha=0.07,\beta=0.75)}$	15.7 / 17.8	27.2 / 29.8	19.9 / 22.3	28.5	18.8	13.3
$Ours_{(\alpha=0.14,\beta=0.75)}$	15.8 / 18.2	26.1 / 28.7	$19.7\ /\ 22.3$	28.2	19.4	13.8
Ours _{($\alpha = 0.14, \beta = 0.75$), BGNN [30]}	17.1 / 19.2	22.9 / 25.7	$19.6 \ / \ 22.0$	24.4	20.2	16.4
$Ours_{(\alpha=0.14,\beta=0.75),M=3}$	19.5 / 23.4	30.8 / 35.6	$23.9 \ / \ 28.2$	32.9	28.1	15.8

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Siddhesh Khandelwal (PhD, UBC)

Experiments

Our proposed transformer based approach outperforms existing baselines, while simultaneously operating on a wide spectrum of performance metrics.

Method	mR@50/100	R@50/100	hR@50/100	Head	Body	Tail
BGNN [30, 29] RelDN [53, 29]	$\left \begin{array}{c} 8.6 \ / \ 10.3 \\ 4.4 \ / \ 5.4 \end{array}\right $	28.2 / 33.8 30.3 / 34.8	$13.2 \ / \ 15.8 \ 7.7 \ / \ 9.3$	$\begin{array}{c} 29.1\\ 31.3\end{array}$	$\begin{array}{c} 12.6 \\ 2.3 \end{array}$	$2.2 \\ 0.0$
AS-Net [4] HOTR [27]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$18.7 \ / \ 21.1 \\ 23.5 \ / \ 27.7$	$9.2 / 10.7 \ 13.4 / 16.7$	$\begin{array}{c} 19.6\\ 26.1 \end{array}$	7.7 16.2	$2.7 \\ 3.4$
	Concurre	nt Work				
$SGTR_{M=1}$ [29] $SGTR_{M=3}$ [29] $SGTR_{M=3,BGNN}$ [30] [29]	$ \begin{vmatrix} 12.0 / 14.6 \\ 12.0 / 15.2 \\ 15.8 / 20.1 \end{vmatrix} $	25.1 / 26.6 24.6 / 28.4 20.6 / 25.0	$16.2 \ / \ 18.8 \\ 16.1 \ / \ 19.8 \\ 17.9 \ / \ 22.3$	$27.1 \\ 28.2 \\ 21.7$	$17.2 \\ 18.6 \\ 21.6$	$6.9 \\ 7.1 \\ 17.1$
Ours _($\alpha = 0.0, \beta = *$) Ours _($\alpha = 0.14, \beta = 0.5$) Ours _{($\alpha = 0.07, \beta = 0.75$) Ours_($\alpha = 0.14, \beta = 0.75$)}	$ \begin{vmatrix} 8.0 / 8.8 \\ 14.4 / 16.4 \\ 15.7 / 17.8 \\ 15.8 / 18.2 \end{vmatrix} $	29.7 / 32.1 27.9 / 30.4 27.2 / 29.8 26.1 / 28.7	12.6 / 13.8 19.0 / 21.3 19.9 / 22.3 19.7 / 22.3	$\begin{array}{c} 31.7 \\ 30.0 \\ 28.5 \\ 28.2 \end{array}$	9.0 17.3 18.8 19.4	$1.4 \\ 11.2 \\ 13.3 \\ 13.8$
Ours _{(α=0.14,β=0.75),BGNN [30] Ours_{(α=0.14,β=0.75),M=3}}	17.1 / 19.2 19.5 / 23.4	22.9 / 25.7 30.8 / 35.6	19.6 / 22.0 23.9 / 28.2	24.4 32.9	20.2 28.1	16.4 15.8

Siddhesh Khandelwal (PhD, UBC)

Visualization

The graph quality **improves** over multiple refinement steps

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

Visualization

The graph quality improves over multiple refinement steps

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)

This also means we can trade off **quality** for **computation**

Data Efficiency, Strategy 4: Adding Prior Knowledge

(Case-study in Common Sense)

Question: This animal is known for many acute senses including what?

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

Aditya Chinchure (MSc, UBC)

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

Aditya Chinchure (MSc, UBC)

Requires **visual knowledge** that the cat is present, but also **common sense** semantic knowledge about cats as specie

2022 VACV HAWAII JAN 4-8

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

Knowledge Generation & Selection

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

Convert question into declarative statement and concatenate detected objects

Knowledge Generation & Selection

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

Query a neural knowledge-based model to extract common sense inferences

Knowledge Generation & Selection

Query a neural knowledge-based model to extract common sense inferences

umbrella umbrella stand store garage park	
of umbrella handle umbrella head umbrella umbrella blade umbrella cap	
or vert from rain protect from sun protect themselves keep dog dry use as weapon	
ge Generation & Selection	

Convert inferences into sentences using lingual templates

Select inferences that are most relevant for the current question

Results

Method	Knowledge Sources	OK-VQA	A-OKVQA	Approx. Params
ViLBERT [36]	-	-	25.85	116M
LXMERT [36]	-	-	25.89	-
BAN + AN [29]	Wikipedia	25.61	-	-
BAN + KG-AUG [20]	Wikipedia + ConceptNet	26.71	-	-
MUTAN + AN [29]	Wikipedia	27.84	-	-
ConceptBert [9]	ConceptNet	33.66	-	118M
KRISP [28]	Wikipedia + ConceptNet	32.31	27.1	116M
KRISP [28]	Wikipedia + ConceptNet + VQA P.T.	38.9	-	116 M
Visual Retriever-Reader [26]	Google Search	39.2	-	-
MAVEx [47]	Wikipedia + ConceptNet + Google Images	41.37	-	-
GPV2 [18,36]	Web Search (Web10k) + COCO P.T.	-	40.7	220M
PICa-Base [48]	GPT-3	43.3	-	175B
PICa-Full [48]	GPT-3	48.0	-	175B
KAT [14]	Wikidata + GPT-3	54.41	-	175B
VLC-BERT (Ours)	VQA P.T. + COMET	43.14	38.05	118M

Qualitative Results

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

Q: This was used to keep the house warm before

Q: What is the person doing? Tags: kite, skateboard VLC-BERT base: Skateboard VLC-BERT COMET: Fly kite

Commonsense Inferences (C):

The person can ride the kite (0.25)

The person can fly kite (0.22)

The person is made of the kite to be flying (0.19)

Before, the person needed to have a kite (0.18)

After, the person rides the kite happens (0.14)

Qualitative Results

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)

on doing? Tags: kite,
ateboard : Fly kite
ces (C):
kite (0.25)
0.22)
ne kite to be flying (0.19)
ed to have a kite (0.18)
ne kite happens (0.14)

- -

2022 VACV WAIKOLDA HAWAII JAN 4-8

To conclude ...

- Data-efficient Learning
 - Large-model + Transfer-learning
 - Multi-task learning + Fine-tuning
 - Foundational Model + Fine-tuning
 - Prior-knowledge Integration
 - In-context Learning, Prompting
 - Many other techniques ...
- Compute-efficient Inference
 - Iterative refinement with early stopping (a.k.a. cascades)

- Many other techniques ...

- Data-bias Mitigation
 - Data re-sampling
 - Loss re-weighting
 - Many other techniques ...

