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Huge potential for real-world impact! ... by bringing
together vision researchers and industrial practitioners

Track Description Make a Challenge Submission
//\ / Challenge 1 Data-efficient Defect Detection @
- % Challenge 2 Data-generation for Defect Detection Q

.. and formalizing challenges with supporting data
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Self Disclosure: | do not work on InduStrial InspectiON applications,
but the high-level ideas and methods we are developing in other
vision domains may be useful in these applications
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Why Data-efficient Learning?

e Scientific curiosity
Most current neural network architectures are not nearly as efficient as human
learners (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading (1]

https://decemberlabs.com/blog/openai-gpt3-the-new-ai-that-will-blow-your-mind-might-also-be-a-little-overrated/ https://www.scientificamerican.com/article/are-there-too-many-neuroscientists/

[1] https://theconversation.com/were-told-ai-neural-networks-learn-the-way-humans-do-a-neuroscientist-explains-why-thats-not-the-case-183993



https://theconversation.com/were-told-ai-neural-networks-learn-the-way-humans-do-a-neuroscientist-explains-why-thats-not-the-case-183993

Why Data-efficient Learning?

Most current neural network architectures are not nearly as efficient as human
learners (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading (')

|
For some domains / problems there may not be enough data to label ...

Adamantinoma — a rare bone cancer — may have as few as 300 reported cases)

https://developer.nvidia.com/blog/automatically-segmenting-brain-tumors-with-ai/



Why Data-efficient Learning?

e Scientific curiosity
Most current neural network architectures are not nearly as efficient as human
learners (e.g., GPT-3 is trained on 400 billion words, which would take a human 400 years of continuous reading! )

e Inherent inability to large-scale label data
For some domains / problems there may not be enough data to label ..

Adamantinoma — a rare bone cancer — may have as few as 300 reported cases)

e Scaling and granularity of vision tasks
As we attempt to scale vision systems to address more challenging inference
tasks, we will not be able to get away with exhaustive data labeling



Granularity of the task vs. annotation cost ...

Image-level
Classification

Man, Woman, Horse
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Image-level Instance-level Instance-level
Classification Detection Segmentation

Man, Woman, Horse Man, Woman, Horse, Horse

AL <
Q}

b A
-




Image-level
Classification

Man, Woman, Horse

Granularity of the task vs. annotation cost

Instance-level
Detection

Instance-level
Segmentation

Man, Woman, Horse, Horse

L el L 4
"‘,‘q‘

Scene-graph
Generation

Derson person

o—9©0
next to

sitting sitting
on on

next to




Granularity of the task vs. annotation cost

Instance-level
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Question
Answering

Q: What are people doing”?
Q: What time of the year is it?
Q: Are the people married?




Why Compute-efficient Learning?

e Ability to run on low-compute devices
Most current neural network architectures are not able to run on mobile or
embedded devices

® Low-latency inference
Ability to run with low-latency, means high throughput for the system

e High adaptability of the model
f both learning and inference are compute-efficient, we can potentially adopt
models mode easily with incoming data



Why Compute-efficient Learning?

® Low-latency inference
Ability to run with low-latency, means high throughput for the system

e High adaptability of the model
f both learning and inference are compute-efficient, we can potentially adopt
models mode easily with incoming data

Inspection Applications:
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Why Less-biased Learning”

e Biases in ML models have been shown and are concerning
Existing models are excellent in picking up, modeling (and in some cases) even
amplifying (human) biases available in the data



Why Less-biased Learning”

e Biases in ML models have been shown and are concerning
Existing models are excellent in picking up, modeling (and in some cases) even
amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??7
Output: Homemaker

Input: Man to doctor as woman to ?77?
Output: Nurse

[“Man is to Computer Programmer as Woman is to Homemaker”? Debasing Word
Embeddings”, Bolukbasi, Chang, Zou, Saligrama, KalaiNeurlPS, 2016]



Why Less-biased Learning”

e Biases in ML models have been shown and are concerning
Existing models are excellent in picking up, modeling (and in some cases) even
amplifying (human) biases available in the data

Language Model (trained to complete analogies)

Testing:

Input: Man to computer programmer as woman to ??7

Output: Homemaker Prompt: “A photo of a doctor” Prompt: “A photo of a nurse”

Input: Man to doctor as woman to ?77?
Output: Nurse DALL-E Generated: 2.35 male doctors for every 1 female

US Empirical Statistics: 1.78 male doctors for every 1 female

[“Man is to Computer Programmer as Woman is to Homemaker”? Debasing Word

Embeddings”, Bolukbasi, Chang, Zou, Saligrama, KalaiNeurlPS, 2016]
https://cornell-data.medium.com/how-biased-are-text-to-image-models-99e8fdb8chab



Why Less-biased Learning”

e Biases in ML models have been shown and are concerning
Existing models are excellent in picking up, modeling (and in some cases) even
amplifying (human) biases available in the data

Language Model (trained to complete analogies)
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Inspection, Defect and Anomaly Detection

e Large-number of defect-free images may not be available

(e.g., new product lines starting to be manufactured)

Image from Cameralyze

| “A hierarchical transformation-discriminating generative model for few shot anomaly detection”, Sheynin, Benaim, Wolf, ICCV, 2021. ]
| “Registration based few-shot anomaly detection”, Huang, Guan, Jiang, Zhang, Spratling, Wang. ECCV, 2022. ]

- “Anomaly detection via few-shot learning on normality”, Ando,Yamamoto. ECML PKDD, 2022. |

| “Same same but differnet: Semi-supervised defect detection with normalizing flows”, Rudolph, Wandt, Rosenhahn, WACV, 2021 ]




Inspection, Defect and Anomaly Detection

e Large-number of defect-free images may not be available

(e.g., new product lines starting to be manufactured)

® There will be few defect images if any
(e.g., leading to huge class imbalance)
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Data Efficiency, Strategy 1:
| arge Model + Transfer Learning
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Data Efficiency, Strategy 1:
| arge Model + Transfer Learning

Small Labeled Dataset
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UniT: Unified Knowledge Transfer for Any-shot Detection

There Is no single unified solution that is applicable to a wide range of supervision:
from zero to a few instance-level samples for novel classes

Siddhesh Khandelwal* Raghav Goyal*
Abundant Abundant ] ' Few / Zero Abundant

We propose an intuitive unified framework that can work

seamlessly across settings and levels of supervision

ycle

Base Classes
SOSSE|D) [OAON

cat

Image-level  Instance-level Instance-level Image-level
Data Data Data Data

UniT: Unified Knowledge Transfer for Any-shot Object Detection and Segmentation, Khandelwal, Goyal, Sigal (2027)



Data Efficiency, Strategy 2:
Multi-task + [ransfer Learning

Source Task 2

Source Jask 1 Source Task K Small Labeled Dataset
for Target Task
Transter

L earn Model for | | L earn Model for
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Multi-task Video Understanding

— ICCV23

TBD



Data Efficiency, Strategy 3:
-oundational Model

Small Labeled Dataset
for Target Task

Learn (Foundational) Model with — franster = Learn Model for

. —-
Self-supervised Proxy Task(s) Ceatures Target Task



Data Efficiency, Strategy 3:
-oundational Model

Small Labeled Dataset
for Target Task

* Transfer | —
©OpenAI (1 -, ¢ chrargpr &)

GPT-4 Features @ ,};f
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Self-supervised Learning



Self-supervised Learning

e Contrastive / Discriminative Learning (introduce
transformations and learn invariant representation)

e \Vith negative samples (e.g., SmCLR [Chen et al., ICML'20],
MoCo [He et al., CVPR’20])

e \\ithout negative samples (e.g., BYOL [Grill et al.,, NeurlPS’20],
DINO [Caron et al., ICCV’'21])

fo,
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Self-supervised Learning

e Contrastive / Discriminative Learning (introduce
transformations and learn invariant representation)

e \Vith negative samples (e.g., SmCLR [Chen et al., ICML'20],
MoCo [He et al., CVPR’20])

e \\ithout negative samples (e.g., BYOL [Grill et al.,, NeurlPS’20],
DINO [Caron et al., ICCV’'21])

{ 1 I'Jol B

® Predictive / Generative Learning (predict what is
missing and/or what comes next)

e Bert-style masked image modeling (e.g., BET [Bao et al.,
ICLR’22], MAE [He et al., CVPR’22])

e GPT-style autoregressive image modeling e.g., iGPT
[Chen et al., ICML’20])
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Self-supervised Learning

Bert-style GPT-style
Task: predict missing -X. X Task: iteratively predict XINGEEEE T
pixels / patches the next pixel / patch .
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® Predictive / Generative Learning (predict what is
missing and/or what comes next)

e Bert-style masked image modeling (e.g., BET [Bao et al.,
ICLR’22], MAE [He et al., CVPR’22))

o GPT-style autoregressive image modeling e.g., iGPT
[Chen et al., ICML20])




Self-supervised Learning

Bert-style GPT-style
Task: predict missing -X. X Task: iteratively predict XINGEEEE T
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® Predictive / Generative Learning (predict what is
missing and/or what comes next)

e Bert-style masked image modeling (e.g., BET [Bao et al.,
ICLR’22], MAE [He et al., CVPR’22))

o GPT-style autoregressive image modeling e.g., iGPT
[Chen et al., ICML20])




Visual “Language” Model

Tianyu Hua
(MSc, UBC )

A J B
Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023) _,';h I c L R




Visual “Language” Model

How do we partition an image into “words”?

Tianyu Hua
(MSc, UBC)

How do we serialize an image into a sequence of these words?

How do we formalize the prediction for the next likely word”?

A | .
Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023) {% I c L R




Visual “Language” Model

How do we partition an image into “words”?

Tianyu Hua
(MSc, UBC )

How do we serialize an image into a sequence of these words?
How do we formalize the prediction for the next likely word”?

vt
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- » A : . i
foveal vision e\ & 7 - icro-saccadic

Saccode

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)




Random Segments with Autoregressive Coding

s B

Tianyu Hua
(MSc, UBC )

Group pixels into patches (visual words)

Group images patches (words) into hierarchically
arranged segments (phrases and sentences)

— Within each segment, predictions are made in parallel

— AcCross segments, predictions are made seguentially

Randomized serialization strategy to account for
different order of visual traversal

A J B
Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023) _,';“3 I c L R




Random Segments with Autoregressive Coding

2 B

Tianyu Hua
(MSc, UBC )

Group pixels into patches (visual words)

Group images patches (words) into hierarchically
arranged segments (phrases and sentences)

— Within each segment, predictions are made in parallel

— AcCross segments, predictions are made seguentially

Randomized serialization strategy to account for
different order of visual traversal

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023) .3 I c L R




Autoregressive Segment Prediction
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Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)
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Image Tokenization

CIFAR10

Pixel-raster




Image Tokenization
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Image Tokenization
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Image Tokenization
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Image Tokenization
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Image Serialization
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Image Serialization
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Token Grouping (into segments)

ImageNet100
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Token Grouping (into segments)
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Visualizations

A .
Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023) {% I c L R




| ow-data Image Classification (on CIFAR10/100 Datasets)

Image-level
Classification
CIFAR10 CIFAR100 Man, Woman, Horse
Model LIN FT LIN FT S B
Supervised 91.3 64.13
DINO (Caron et al., 2021) 89.0 944 65.78 76.3

MAE (He et al., 2021 87.3 959 54.0 81.1

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023) _;;3 I c L R




Image Classification (on ImageNet Dataset)

Model Backbone Parameter Linear Fine-tune
Supervised DeiT (Touvron et al., 2021) ViT-B 86M N/A 81.2
Clustering DINO (Caron et al., 2021) ViT-B 86M 78.2 82.8
Contrastive Learning  MoCo v3 (Chen et al., 2021b) ViT-B 86M 76.7 83.2
Masked Image BEIT (Bao et al., 2022) ViT-B 36M N/A 83.2
Modeling MAE (He et al., 2021) ViT-B 36M 68.0 83.6
1GPT (Chen et al., 2020a) 1GPT-S 76M 41.9 N/A
Autoregressive iGPT (Chen et al., 2020a) iGPT-M 455M 54.5 N/A

Image Modeling 1GPT (Chen et al., 2020a ' 1362M 65.2

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)

Image-level
Classification

Man, Woman, Horse




Object Detection (on COCO Dataset)

Instance-level

Detection
Method Pre-Epochs AP%9%  Apmask Man, Woman,
DeiT (Touvron et al., 2021) 300 479 42.9 rlorse, Horse
MoCo-v3 (Chen et al., 2021b) 300 47.9 42.7 B S
DINO (Caron et al., 2021) 300 46.8 41.5
BEIT (Bao et al., 2022) 800 49.8 44.4
MAE (He et al., 2021 1600 50.3 44.9

RandSAC-Square (K=16—4) 1600 50.9 45.0

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)




Image Segmentation (on ADE20K Dataset)

Instance-level
Segmentation
Method Crops Super. Self-super. mloU Man, Woman,
DeiT (Touvron et al., 2021) 1 v/ X 47.0 AEEE B
MoCo v3 (Chen et al., 2021b) 2 X v 47.2 P e "I
DINO (Caron et al., 2021) 2+10 X v 47.2
BEIiT (Bao et al., 2022) 1 X v 46.5
MAE 1 X v 48.1
1 X v
1 X v

Self-supervision through Random Segments with Autoregressive Coding (RandSAC), Hua, Tian, Ren, Raptis, Zhao, Sigal, (2023)




Compute Efficiency, Strategy 1:
terative Refinement



Chapter 2:
Computational Efficiency and Data Bias



(PhD, UBC )

Scene Graphs Siddhesh Khandelwal .

Scene Graphs are graph based representation of images that encode
the objects In an image along with their relationships.
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022) $ie



Scene Graphs iddhesh Khandolwl =

Scene Graphs are graph based representation of images that encode
the objects In an image along with their relationships.
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



(PhD, UBC )

Scene Graphs Siddhesh Khandelwal CJESSS

Scene Graphs are graph based representation of images that encode
the objects In an image along with their relationships.
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)
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Scene Graphs are graph based representation of images that encode
the objects In an image along with their relationships.

Hat

Person Umbrella

Lamp post

;9 :I?g'.;&.“
},. NEURAL INFORMATION
"‘?’ . PROCESSING SYSTEMS
ole
o

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



(PhD, UBC )

Scene Graphs Siddhesh Khandelwal CJESSS

Scene Graphs are graph based representation of images that encode
the objects In an image along with their relationships.
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



Sce n e G rap h S ot Siddhesh Khandelwal "

(PhD, UBC )

Subject Predicate

Predictor Predictor Predictor
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Sce n e G rap h S ot Siddhesh Khandelwal "

(PhD, UBC )

Subject Predicate

Predictor Predictor Predictor
t=1
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022) e



AT AEEEEEEEEEE———
Iterative Scene G rap h Generation Siddnesh Khandelwa
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Key Insight: Formulate the problem of Scene Graph estimation as
one of iterative refinement

Subject Object Predicate
Predictor Predictor Predictor
t=1 t=1 t=1

Subject Object Predicate
Predictor Predictor Predictor

t=2 t=2 t=2

Subject Object Predicate
Predictor Predictor Predictor
t=3 t=3 t=3
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022) goet



Siddhesh Khandelwal [’
(PhD, UBC) "

Transformer Based lterative Generation
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Siddhesh Khandelwal i
(PhD, UBC) -

Image Encoder

Similar to DETRI, the encoder is a multi-layer transformer network that encodes
Image into a feature representation

Z
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> Backbone ->[ oo ]
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[1] Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Springer, Cham, 2020.
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



(PhD, UBC )

Trlp\e’[ Decoder Siddhesh Khandelwal CJESSS
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Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



Trlp\et DeCOder Siddhesh Khandelwal

(PhD, UBC )

The iterative framework is modelled explicitly by using two kinds of conditioning
and implicitly by a joint loss
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Conditioning Within Step

Siddhesh Khandelwal (JZSa
(PhD,UBC)

The predicate predictor within a particular step f is conditioned on the subject and

object decoder outputs at step ¢
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(PhD, UBC)

Conditioning Across Steps e

The predicate decoder within a particular step ¢ iIs conditioned on the previous
graph estimate from step t — 1
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We additionally use a novel joint loss to ensure a valid scene graph Is generated at
each step. This loss implicitly enables refinement.
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De-Biasing, Strategy 1.
Data Re-sampling
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| “Bipartite Graph Network with Adaptive Message Passing for Unbiased Scene Graph Generation”, Li, Zhang, Wan, He, CVPR, 2021 |
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De-Biasing, Strategy 2.
| 0SS Re-scaling



(PhD, UBC )

LOSS Re-weighting Siddhesh Khandelwal ’. .

A l0ss re-weighting strategy Is used to address the inherent long-tail nature of the
task, giving our model flexibility to trade-off dominant for underrepresented classes

X W
4 )
Joint Loss
\. J
o p
W, = max ,1.0 o™
CIaSS frequency IN tra|n|ng Set 3* " NEURAL INFORMATION

"‘:3. , PROCESSING SYSTEMS
ole
°

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022)



Experiments

Siddhesh Khandelwal L}
(PhD, UBC) T

Our proposed transformer based approach outperforms existing baselines, while
simultaneously operating on a wide spectrum of performance metrics.

Method mR@50/100 R@50/100 hR@50/100 | Head Body Tail
BGNN [30, 29] 8.6/10.3 28.2/33.8 13.2/15.8 |29.1 12.6 2.2
RelDN [53, 29] 44/54 30.3/348 7.7/93 |31.3 23 0.0
AS-Net [4] 6.1/72 187/21.1 9.2/10.7 | 19.6 7.7 2.7
HOTR [27] 94 /120 23.5/27.7 13.4/16.7 | 26.1 16.2 3.4
Concurrent Work
SGTR ;-1 [29] 120/14.6 25.1/26.6 16.2 /188 | 27.1 17.2 6.9
SGTR;—3 [29] 120/15.2 24.6/284 16.1/19.8 | 28.2 18.6 7.1
SGTR =3 BoNN 207 [2Y] 15.8/20.1 20.6/25.0 179/223 | 21.7 21.6 17.1
OUrS (4_0.0,5—x) 8.0/88 29.7/32.1 12.6/13.8|31.7 90 14
OUrs (4 —0.07. 5—0.75) 15.7/17.8 27.2/29.8 19.9/22.3 | 285 18.8 13.3
OUrS (q—o.14 5—0.75) 15.8 /18.2 26.1/28.7 19.7/22.3 | 282 19.4 13.8
Ours(a=0.14,5=0.75),BGNN[ ] 17.1 / 19.2 22.9 / 25.7 19.6 / 22.0 24.4 20.2 164
Ours(a=0_14,5=0.75)’M=3 19.5 / 23.4 30.8 / 35.0 23.9 / 28.2 32.9 28.1 15.8
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Experiments Siddnesh Khandelwal (2

(PhD, UBC )

Yy S
Our proposed transformer based approach outperforms existing baselines, while
simultaneously operating on a wide spectrum of performance metrics.

OUrS (40,0 5—x) 8.0/88 29.7/32.1 12.6/13.8|31.7 9.0 14
OUrS (0 —0.07 5—0.75) 15.7/17.8 27.2/29.8 19.9/22.3 | 28.5 18.8 13.3
OIS (q_0.14 5—0.75) 15.8/18.2 26.1/28.7 19.7/22.3 | 282 19.4 13.8
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Our proposed transformer based approach outperforms existing baselines, while
simultaneously operating on a wide spectrum of performance metrics.

Ours (q—o.14,3—0.75)BoNN 0] | 17.1/19.2 22.9/25.7 19.6 /22.0 | 24.4 20.2 16.4
OUIS (- .14, 5—0.75), M —3 19.5/23.4 30.8/35.6 23.9/28.2|329 281 158
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Visualization Siddhesh Khandelwal (J

(PhD, UBC)

The graph quality improves over multiple refinement steps
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The graph quality improves over multiple refinement steps

————————————————

/" Cow Umbrellas,

A 5 This also means we can trade off
' Beach o quality for computation

E al al :

————————————————

+—1 S Cow Umbrellas,
. 'walking on :
' holding | |
1, Beach |
it on al E  Cow Umbrcllé\‘
* Umbrella Pe plC,,' . walking on | :
""""""""" - under !
t = | | Beach |
: on al E
o — \Um rella Pe plC,/'

---------------

Iterative Scene Graph Generation, Khandelwal, Sigal, (2022) t =



Data Efficiency, Strategy 4:
Adding Prior Knowledge

( Case-study in Common Sense )

Small Labeled Dataset
for Target Task

|

Learn Model for
| Target Task

Knowledge



Knowledge-based Visual Question Answering

Aditya Chinchure
(MSc, UBC)

Question:

This animal is known for many
acute senses including what?

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge-based Visual Question Answering

Aditya Chinchure
(MSc, UBC)

S

Requires visual knowledge that the cat is
oresent, but also common sense semantic
knowledge about cats as specie

Question:

This animal is known for many
acute senses including what?

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge-based Visual Question Answering

)
1

VLC-BERT Transformer
A A
Image Regions (I)
Question (Q)
Why do they have
umbrellas?

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge-based Visual Question Answering
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VLC-BERT Transformer
X A
I Image Regions (1)
Question (Q) Commonsense Inferences (C)

: Knowledge
: Generation &
. Selection

Question Object tags

Why do they have

umbrellas? dog, chair...
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Knowledge Generation & Selection

O
:

dog, chair

What is the
purpose of the
umbrella?
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Knowledge Generation & Selection
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Knowledge Generation & Selection
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Knowledge Generation & Selection
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Knowledge Generation & Selection

Relations ] umbrella :
AtLocation : umbrella stand ,
MadeOf i store I
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Knowledge Generation & Selection

Convert inferences into sentences using lingual templates
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Knowledge Generation & Selection

Select inferences that are most relevant for the current question

= B S S e R T T T T S S T S T e S S R S T R B T e S S >
Relations I umbrella :
AtLocation : umbrella stand .
MadeOf i store !
CapableOf i 1 AtLocation garage :
HasProperty : park |
Causes | umbrella handle '
xWant ' s MadeOf b '
: ade mbrella head I
1 - umbrella Sentence :
| umbrella blade construction ,
: umbrella cap : |
! f ’ You are likely to find umbrella at store :
! protectfrom rain | ympyelias is made of umbrella head |
d protect from sun 1
: UsedFor protect themselves |
. keep dog d '

dog, chair —0—>: The purpose of the umbrellas usepas m?eag,on '\  umbrella protects

i with dog and chair | . from sun,
: y umbrelia protects
I from rain
What is the : ' ] |
purpose of the FQq—r—> 3::?;’:3:: I .
umbrella? . Knowledge Generation & Selection :
I o oo oo oo o o o o wn mn en an ae En Ee En Ee e En e B o S S BN S SN BN SN SN S BN S BN EE W SN SN Ee e En e we e
A

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)



Knowledge-based Visual Question Answering
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VLC-BERT Transformer
X A
I Image Regions (1)
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Why do they have

umbrellas? dog, chair...
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Results

Question
Method Knowledge Sources OK-VQA A-OKVQA Approx. Params Answerin g
ViLBERT [36] - - 25.85 116M
LXMERT [36] - - 25.89 E
BAN + AN [29] Wikipedia 25.61 i i Q: What are people doing?
BAN + KG-AUG [20] Wikipedia + ConceptNet 26.71 - - Q: What time of the year s it?
MUTAN + AN [29] Wikipedia 27.54 - - Q: Are the people married?
ConceptBert [9] ConceptNet 33.66 - 118M
KRISP [28] Wikipedia + ConceptNet 32.31 27.1 116M
KRISP [28] Wikipedia + ConceptNet + VQA P.T. 38.9 - 116M
Visual Retriever-Reader [26] Google Search 39.2 - -
MAVEXx [47] Wikipedia + ConceptNet + Google Images  41.37 - -
GPV2 [18,36] Web Search (Web10k) + COCO P.T. - 40.7 220M
PICa-Base [48] GPT-3 43.3 - 175B
PICa-Full [48] GPT-3 48.0 . 175B
KAT [14] Wikidata + GPT-3 54.41 - 175B

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)




Qualitative Results

Q: What is the object the man is on made from?
Tags: skateboard, bench

VLC-BERT base: Metal

VLC-BERT COMET: Wood

Commonsense Inferences (C):

The object is made of made from wood (0.52)

Before, the skateboard is made from wood happens (0.4)

e e e e e e e e e -

- Q: This was used to keep the house warm before
. central air? Tags: potted plant, couch

" VLC-BERT base: Heat

- VLC-BERT COMET: Fire

Commonsense Inferences (C):

This can make a fire (0.27)

This is used for use as a blanket (0.2)

EE T T T

Q: What is the person doing? Tags: kite,
skateboard
VLC-BERT base: Skateboard

- VLC-BERT COMET: Fly kite

Commonsense Inferences (C):

The person can ride the kite (0.25)

The person can fly kite (0.22)

The object is used for to skate on it (0.03)

vvvvvvvvvvvvv
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Sometlmes, the object causes the object is made from (0.01)

Sometimes, this causes hot (0.17)

L e e e L L L L e e L L e L e L L e R TR R,

This is made up of heating (0.1)

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi

*, Chinchure®, Sigal, Liao and Shwartz, (2022)
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After, the person rides the kite happens (0.14)




Qualitative Results

Q: What is the person doing? Tags: kite,
skateboard

VLC-BERT base: Skateboard

. VLC-BERT COMET: Fly kite

—

Commonsense Inferences (C):

The person can ride the kite (0.25)

The person can fly kite (0.22)

L g R [FEUN S S G S gy S T g ey R S
ne personis maae orthekKite to t

Before, the person needed to have a kite (0.18)

After, the person rides the kite happens (0.14)

VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge, Ravi*, Chinchure*, Sigal, Liao and Shwartz, (2022)




To conclude ...

e Data-efficient Learning
— Large-model + Transfer-learning
— Multi-task learning + Fine-tuning
— Foundational Model + Fine-tuning
— Prior-knowledge Integration
— In-context Learning, Prompting
— Many other techniques ...

e Compute-efficient Inference
— Iterative refinement with early stopping (a.k.a. cascades)
— Many other techniques ...

e Data-bias Mitigation
— Data re-sampling
— Loss re-weighting
— Many other techniques ...
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